
Week 11 - Monday

 What did we talk about last time?
 Exam 2 Post Mortem
 Users and groups

Weeks of programming can save you hours of planning.

Anonymous

 Technically, all files are binary files
 They all carry data stored in binary

 But some of those binary files are called text files because
they are filled with human readable text

 When most people talk about binary files, they mean files
with data that is only computer readable

 Wouldn't it be easier to use all
human readable files?

 Binary files can be more efficient
 In binary, all int values are the same

size, usually 4 bytes
 You can also load a chunk of

memory (like a WAV header) into
memory with one function call

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11

 To specify that a file should be opened in binary mode,
append a b to the mode string

 On some systems, the b has no effect
 On others, it changes how some characters are interpreted

FILE* file = fopen("output.dat", "wb");

FILE* file = fopen("input.dat", "rb");

 The fread() function allows you to read binary data from a file
and drop it directly into memory

 It takes
 A pointer to the memory you want to fill
 The size of each element
 The number of elements
 The file pointer

double data[100];
FILE* file = fopen("input.dat", "rb");
fread(data, sizeof(double), 100, file);
fclose(file);

 The fwrite() function allows for binary writing
 It can drop an arbitrarily large chunk of data into memory at once
 It takes
 A pointer to the memory you want to write
 The size of each element
 The number of elements
 The file pointer

short values[50];
FILE* file = NULL;
//fill values with data
file = fopen("output.dat", "wb");
fwrite(values, sizeof(short), 50, file);
fclose(file);

 Binary files can be treated almost like a big chunk of memory
 It is useful to move the location of reading or writing inside

the file
 Some file formats have header information that says where in the

file you need to jump to for data
 fseek() lets you do this
 Seeking in text files is possible but much less common

 The fseek() function takes
 The file pointer
 The offset to move the stream pointer (positive or negative)
 The location the offset is relative to

 Legal locations are
 SEEK_SET From the beginning of the file
 SEEK_CUR From the current location
 SEEK_END From the end of the file (not always supported)

FILE* file = fopen("input.dat", "rb");
int offset;
fread(&offset,sizeof(int),1,file); //get offset
fseek(file, offset, SEEK_SET);

 Write a program that prompts the user for an integer n and a
file name

 Open the file for writing in binary
 Write the value n in binary
 Then, write the n random numbers in binary
 Close the file

 Write a program that reads the file generated in the previous
example and finds the average of the numbers

 Open the file for reading
 Read the value n in binary so you know how many numbers to

read
 Read the n random numbers in binary
 Compute the average and print it out
 Close the file

 You just learned how to read and write files
 Why are we going to do it again?

 There's a set of Unix/Linux system commands that do the same
thing

 Most of the higher level calls (fopen(), fprintf(), fgetc(),
and even trusty printf()) are built on top of these low level I/O
commands

 These give you direct access to the file system (including pipes)
 They can be more efficient
 You'll use the low-level file style for networking
 All low level I/O is binary

 To use low level I/O functions, include headers as follows:
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

 You won't need all of these for every program, but you might
as well throw them all in

 High level file I/O uses a FILE* variable for referring to a file
 Low level I/O uses an int value called a file descriptor
 These are small, nonnegative integers
 Each process has its own set of file descriptors
 Even the standard I/O streams have descriptors

Stream Descriptor Defined Constant
stdin 0 STDIN_FILENO

stdout 1 STDOUT_FILENO

stderr 2 STDERR_FILENO

 To open a file for reading or writing, use the open() function
 There used to be a creat() function that was used to create new

files, but it's now obsolete
 The open() function takes the file name, an int for mode,

and an (optional) int for permissions
 It returns a file descriptor

int fd = open("input.dat", O_RDONLY);

 The main modes are
 O_RDONLY Open the file for reading only
 O_WRONLY Open the file for writing only
 O_RDWR Open the file for both

 There are many other optional flags that can be combined with the main modes
 A few are
 O_CREAT Create file if it doesn’t already exist
 O_DIRECTORY Fail if pathname is not a directory
 O_TRUNC Truncate existing file to zero length
 O_APPEND Writes are always to the end of the file

 These flags can be combined with the main modes (and each other) using bitwise OR

int fd = open("output.dat", O_WRONLY | O_CREAT | O_APPEND);

 Because this is Linux, we can also specify the permissions for a file we create
 The last value passed to open() can be any of the following permission flags bitwise

ORed together
 S_IRUSR User read
 S_IWUSR User write
 S_IXUSR User execute
 S_IRGRP Group read
 S_IWGRP Group write
 S_IXGRP Group execute
 S_IROTH Other read
 S_IWOTH Other write
 S_IXOTH Other execute

int fd = open("output.dat", O_WRONLY | O_CREAT | O_APPEND,
S_IRUSR | S_IRGRP);

 The constants on the previous slides are a perfectly good way to specify permissions
 They're (sort of) readable
 Another way is by using octal
 First, use a single bit for the permissions for read, write, and execute for each of the roles

user, group, and others

 Then, convert the binary into octal
 Each group of three permissions is a single octal digit:
 111 = 7, 101 = 5, 100 = 4, yielding 0754 in octal
 Remember that octal literals in C (and Java) start with zero

1 1 1 1 0 1 1 0 0

Read Write Execute Read Write Execute Read Write Execute

User Group Others

 Convert the following permissions into an octal number:
 User: Read and write
 Group: Read
 Others: Execute

 Convert the octal value 0742 into permissions

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
read(fd, buffer, sizeof(int)*100);

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY | O_CREAT, 0777);
int buffer[100];
int i = 0;
for(i = 0; i < 100; i++)

buffer[i] = i + 1;
write(fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Like always, it's a good idea to close files when you're done

with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close(fd);

 It's possible to seek with low level I/O using the lseek()
function

 Its arguments are
 The file descriptor
 The offset
 Location to seek from: SEEK_SET, SEEK_CUR, or SEEK_END

int fd = open("input.dat", O_RDONLY);
lseek(fd, 100, SEEK_SET);

 Networking
 Start sockets

 Work on Project 5
 Keep reading LPI chapters 13, 14, and 15

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Binary Files
	What is a binary file?
	Why use binary files?
	Changes to fopen()
	fread()
	fwrite()
	Seeking
	fseek()
	Example 1
	Example 2
	Low Level File I/O
	Low level I/O
	Includes
	File descriptors
	open()
	Modes
	Permissions
	An alternative for permissions
	Permission practice
	read()
	write()
	close()
	lseek()
	Upcoming
	Next time…
	Reminders

