
Week 11 - Monday

 What did we talk about last time?
 Exam 2 Post Mortem
 Users and groups

Weeks of programming can save you hours of planning.

Anonymous

 Technically, all files are binary files
 They all carry data stored in binary

 But some of those binary files are called text files because
they are filled with human readable text

 When most people talk about binary files, they mean files
with data that is only computer readable

 Wouldn't it be easier to use all
human readable files?

 Binary files can be more efficient
 In binary, all int values are the same

size, usually 4 bytes
 You can also load a chunk of

memory (like a WAV header) into
memory with one function call

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11

 To specify that a file should be opened in binary mode,
append a b to the mode string

 On some systems, the b has no effect
 On others, it changes how some characters are interpreted

FILE* file = fopen("output.dat", "wb");

FILE* file = fopen("input.dat", "rb");

 The fread() function allows you to read binary data from a file
and drop it directly into memory

 It takes
 A pointer to the memory you want to fill
 The size of each element
 The number of elements
 The file pointer

double data[100];
FILE* file = fopen("input.dat", "rb");
fread(data, sizeof(double), 100, file);
fclose(file);

 The fwrite() function allows for binary writing
 It can drop an arbitrarily large chunk of data into memory at once
 It takes
 A pointer to the memory you want to write
 The size of each element
 The number of elements
 The file pointer

short values[50];
FILE* file = NULL;
//fill values with data
file = fopen("output.dat", "wb");
fwrite(values, sizeof(short), 50, file);
fclose(file);

 Binary files can be treated almost like a big chunk of memory
 It is useful to move the location of reading or writing inside

the file
 Some file formats have header information that says where in the

file you need to jump to for data
 fseek() lets you do this
 Seeking in text files is possible but much less common

 The fseek() function takes
 The file pointer
 The offset to move the stream pointer (positive or negative)
 The location the offset is relative to

 Legal locations are
 SEEK_SET From the beginning of the file
 SEEK_CUR From the current location
 SEEK_END From the end of the file (not always supported)

FILE* file = fopen("input.dat", "rb");
int offset;
fread(&offset,sizeof(int),1,file); //get offset
fseek(file, offset, SEEK_SET);

 Write a program that prompts the user for an integer n and a
file name

 Open the file for writing in binary
 Write the value n in binary
 Then, write the n random numbers in binary
 Close the file

 Write a program that reads the file generated in the previous
example and finds the average of the numbers

 Open the file for reading
 Read the value n in binary so you know how many numbers to

read
 Read the n random numbers in binary
 Compute the average and print it out
 Close the file

 You just learned how to read and write files
 Why are we going to do it again?

 There's a set of Unix/Linux system commands that do the same
thing

 Most of the higher level calls (fopen(), fprintf(), fgetc(),
and even trusty printf()) are built on top of these low level I/O
commands

 These give you direct access to the file system (including pipes)
 They can be more efficient
 You'll use the low-level file style for networking
 All low level I/O is binary

 To use low level I/O functions, include headers as follows:
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

 You won't need all of these for every program, but you might
as well throw them all in

 High level file I/O uses a FILE* variable for referring to a file
 Low level I/O uses an int value called a file descriptor
 These are small, nonnegative integers
 Each process has its own set of file descriptors
 Even the standard I/O streams have descriptors

Stream Descriptor Defined Constant
stdin 0 STDIN_FILENO

stdout 1 STDOUT_FILENO

stderr 2 STDERR_FILENO

 To open a file for reading or writing, use the open() function
 There used to be a creat() function that was used to create new

files, but it's now obsolete
 The open() function takes the file name, an int for mode,

and an (optional) int for permissions
 It returns a file descriptor

int fd = open("input.dat", O_RDONLY);

 The main modes are
 O_RDONLY Open the file for reading only
 O_WRONLY Open the file for writing only
 O_RDWR Open the file for both

 There are many other optional flags that can be combined with the main modes
 A few are
 O_CREAT Create file if it doesn’t already exist
 O_DIRECTORY Fail if pathname is not a directory
 O_TRUNC Truncate existing file to zero length
 O_APPEND Writes are always to the end of the file

 These flags can be combined with the main modes (and each other) using bitwise OR

int fd = open("output.dat", O_WRONLY | O_CREAT | O_APPEND);

 Because this is Linux, we can also specify the permissions for a file we create
 The last value passed to open() can be any of the following permission flags bitwise

ORed together
 S_IRUSR User read
 S_IWUSR User write
 S_IXUSR User execute
 S_IRGRP Group read
 S_IWGRP Group write
 S_IXGRP Group execute
 S_IROTH Other read
 S_IWOTH Other write
 S_IXOTH Other execute

int fd = open("output.dat", O_WRONLY | O_CREAT | O_APPEND,
S_IRUSR | S_IRGRP);

 The constants on the previous slides are a perfectly good way to specify permissions
 They're (sort of) readable
 Another way is by using octal
 First, use a single bit for the permissions for read, write, and execute for each of the roles

user, group, and others

 Then, convert the binary into octal
 Each group of three permissions is a single octal digit:
 111 = 7, 101 = 5, 100 = 4, yielding 0754 in octal
 Remember that octal literals in C (and Java) start with zero

1 1 1 1 0 1 1 0 0

Read Write Execute Read Write Execute Read Write Execute

User Group Others

 Convert the following permissions into an octal number:
 User: Read and write
 Group: Read
 Others: Execute

 Convert the octal value 0742 into permissions

 Opening the file is actually the hardest part
 Reading is straightforward with the read() function
 Its arguments are
 The file descriptor
 A pointer to the memory to read into
 The number of bytes to read

 Its return value is the number of bytes successfully read

int fd = open("input.dat", O_RDONLY);
int buffer[100];
read(fd, buffer, sizeof(int)*100);

 Writing to a file is almost the same as reading
 Arguments to the write() function are
 The file descriptor
 A pointer to the memory to write from
 The number of bytes to write

 Its return value is the number of bytes successfully written

int fd = open("output.dat", O_WRONLY | O_CREAT, 0777);
int buffer[100];
int i = 0;
for(i = 0; i < 100; i++)

buffer[i] = i + 1;
write(fd, buffer, sizeof(int)*100);

 To close a file descriptor, call the close() function
 Like always, it's a good idea to close files when you're done

with them

int fd = open("output.dat", O_WRONLY | O_CREAT | O_TRUNC,
0644);
// Write some stuff
close(fd);

 It's possible to seek with low level I/O using the lseek()
function

 Its arguments are
 The file descriptor
 The offset
 Location to seek from: SEEK_SET, SEEK_CUR, or SEEK_END

int fd = open("input.dat", O_RDONLY);
lseek(fd, 100, SEEK_SET);

 Networking
 Start sockets

 Work on Project 5
 Keep reading LPI chapters 13, 14, and 15

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Binary Files
	What is a binary file?
	Why use binary files?
	Changes to fopen()
	fread()
	fwrite()
	Seeking
	fseek()
	Example 1
	Example 2
	Low Level File I/O
	Low level I/O
	Includes
	File descriptors
	open()
	Modes
	Permissions
	An alternative for permissions
	Permission practice
	read()
	write()
	close()
	lseek()
	Upcoming
	Next time…
	Reminders

